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1. Find the following limits.
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2. (a) If vt = + for some real numbers A and B, find the values of A and B.
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(b) By using the result in (a), find kzﬂ (k S Ty 2).
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3. By using the sandwich theorem, prove that
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4. Let a and b be two positive real numbers and let {x,,} be a sequence of positive real numbers such

that
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(a) Prove that {z,} is monotonic increasing.
(b) Prove that {z,} converges (i.e. lim z, exists) and hence find its limit.
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5. Let {z,} and {y,} be sequences of positive real numbers such that 0 < y; < x; and for n =

1,2,3, -
Tn + Yn
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Tn+1 = 9 and Yn+1 = —

Tn + Yn .
(a) Show that x, > y,, for all natural numbers n.

(b) Prove that {x,} is a monotonic decreasing sequence and {y,} is a monotonic increasing

sequence.
(¢) Prove that {x,} and {y,} converge and lim x, = lim y,.
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(d) Prove that z,y, is a constant and hence find lim z,,.
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6. Let {a,} be a sequence of real numbers defined by a,, = (1 + n) forn=1,2,3,---.
(a) By using the binomial theorem, show that when n > 2,
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Hence, show that a,11 > a, for n > 2.
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(b) By using the inequality in (a) and considering the inequality = < o1’ show that when
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n>2 a, <3.

(c) Show that lim a,, exists.
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